GCSE Computer Science

Unit 1: Hardware

Key terminology

Term	Definition
CPU	The main component in a computer for processing data and instructions.
Control Unit	Directs the flow of instructions and/or data and coordinates the other parts of the CPU. It generates clock ticks or controls the clock.
Arithmetic Logic Unit (ALU)	The ALU performs all the mathematical calculations / logical operations in the CPU.
Registers	Fast access storage locations found on the CPU where data or control information is temporarily stored.
Program Counter (PC)	A counter that keeps track of the memory address of the instruction to be executed next.
Memory Address Register (MAR)	Stores the address in the main memory that is currently being read or written.
Current Instruction Register (CIR)	A temporary holding area for the instruction that has just been fetched from memory.
Memory	Used for the temporary storage of currently running programs and data.
Cache	Incredibly fast, but very expensive volatile memory using in the CPU.
Clock speed	The number of FDE cycles that a CPU can carry out per second.
Cores	Some processors have multiple processors (cores) which can work in parallel, sequentially or can multitask.
Volatile	Stored data is lost when the power is interrupted or switched off.
Permanent	Stored data is kept when the power is interrupted or switched off.

Architecture

The typical Von Neumann architecture

Fetch : The fetch cycle takes the address required from memory, stores it in the current instruction register and moves the program counter on one, so that it points at the next instruction.

Execute : Action(s) that occur during the execution cycle will depend on the instruction itself.

Decode : The control unit authenticates the instruction in the current instruction register. The instruction is decoded to determine the actions that needs to be carried out.

Performance is affected by greater

- cache size
- clock speed
- number of cores.

Cache size

- Can store more data and instructions.
- It can provide instructions and data to the CPU at a much faster rate (than other system memory such as RAM).

Clock speed

• The FDE cycle will run faster, resulting in more instructions being processed.

Number of cores

• More instructions can be processed at the same time.

NOTE: Performance may be affected where one core is waiting on the result of another and therefore cannot carry out any more instructions.

Unit 1: Hardware

Different types of	processor:	Input/output			
RISC (Reduced instruction Set Computer)	CISC (Complex Instruction Set Computer)	Input devices Input devices send data devices such as the follo	to the computer system u wing:	Output devi using Output device using devices	ces s receive data fror such as the followi
 Carries out more complex commands, but the problem is broken down into simpler instructions. 	 Can process a large number of complex instructions. This allows the processor to understand and carry out complex tasks with only a few instructions. 	 Keyboard Mouse Mi Scanner Primary storage Summary of the different 	aphic tablet • Touch so crophone • Webcam	reen · Speakers · Headphone · Printers	 Projectors Plotters
			Cache memory	Read-only Memory (ROM)	Random Access Memory (RAM)
Advantages		Туре	A REAL PROPERTY OF		
• A RISC processor is able to process these	 A CISC processor is able to process complex instructions, without having to break them down 				(C)
simpler instructions quickly.		Volatile or permanent	Volatile	Permanent	Volatile
 Processing simpler 		Data can be changed	\checkmark		\checkmark
instructions also	into many simpler	Relative speed	****	***	**
requires less circuitry to decode and execute these instructions,	 Processing complex instructions however requires more circuitry to decode and execute these instructions, which in turn means more power consumption and therefore more heat being generated. 	Example use	The temporary storage of frequently accessed data and instructions.	Storing programs such as the system BIOS.	Storing currently running program and data.
means less power consumption and		Secondary storage			
therefore less heat being generated.		Optical	Laser beams are project as a 1. If light is not ref	cted onto a disc and if lected back, data is re	light is reflected b ad as a 0.
		Magnetic	Data is stored and read	d using a read-write h	ead and magnetic
		Solid state	The technology is calle consumption and high	d solid state as it does speed access is adva	sn't have any movin ntageous.

eive data from the computer system as the following:

- Projectors
- Plotters •
- Video cards
- Sound cards

Flash memory

Permanent

 \checkmark

*

atile oring currently nning programs

Storing the programs such as the system BIOS.

t is reflected back, then data is read s a 0.

and magnetic platter.

nave any moving parts. Its low power eous.

Unit 1: Hardware

Secondary storage (continued)

The functional characteristics of contemporary secondary storage devices.

Moving relatively small files from work to home	2 GB – 512 GB	****	\checkmark	****
Backing up a home computer system	320 MB – 8 TB	*	\checkmark	***
Storing multimedia files	650 MB (CD) 9 GB (DVD) 50 GB (Blu- ray)	***	\checkmark	**
Backing large commercial servers on multiple tapes	200 GB – 400 GB	**	\checkmark	*
	Moving relatively small files from work to homeBacking up a home computer systemStoring multimedia filesBacking large commercial servers on multiple tapes	Moving relatively small files from work to home2 GB - 512 GBBacking up a home computer system320 MB - 8 TBStoring multimedia files650 MB (CD) 9 GB (DVD) 50 GB (Blu- ray)Backing large commercial servers on multiple tapes200 GB - 400 GB	Moving relatively small files from work to home2 GB - 512 GB****Backing up a home computer system320 MB - 8 TB*Storing multimedia files650 MB (CD) 9 GB (DVD) 50 GB (Blu- ray)****Backing large commercial servers on multiple tapes200 GB - 400 GB***	Moving relatively small files from work to home2 GB - 512 GB****·Backing up a home computer system320 MB - 8 TB*·Storing multimedia files650 MB (CD) 9 GB (DVD) 50 GB (Blu- ray)***·Backing large commercial servers on multiple tapes200 GB - 400 GB***·

Data storage units

Unit	Symbol	Value	Unit	Symbol	Value
Bit	b	1 bit	Terabyte	TB	1024 GB
Nybble	-	4 bits	Petabyte	PB	1024 TB
Byte	В	8 bits	Exabyte	EB	1024 PB
kilobyte	kB	1024 bytes	Zettabyte	ZB	1024 EB
Megabyte	MB	1024 kB	Yottabyte	YB	1024 ZB

Other hardware components

Graphics Processing Unit (GPU)

Integrated GPU

- Uses the computer's RAM
- Cheaper than installing a dedicated GPU
- Generates less heat and uses less
 power
- Perfect for general graphics processing such as watching or editing videos and word processing.

Sound cards

The sound card will convert analogue input signals into digital data and reverse this process for output.

Motherboards

The motherboard is the main circuit board of the computer.

Embedded systems

An embedded system is a combination of software and hardware that performs a specific task whereas a general-purpose computer is designed to carry out multiple tasks.

Examples include

MP3 players, mobile phones, video game consoles, digital cameras, DVD players, and GPS. Household appliances, such as microwave ovens, washing machines and dishwashers.

Dedicated GPU

- Has its own video memory
- Provides the best visual experience
- Used by people such as professional graphic designers and serious gamers
- Uses more power and requires a good cooling system.

Key terminology

Term	Definition
Pixel	A small coloured dot on a computer display (short for picture elements).
Bitmap	Images are stored as an array of pixels.
Vector	Images that do not store the data by pixels, but are a set of instructions for drawing a geometric shape.
Sample rate	The number of audio samples captured every second.
Bit depth	The number of bits available for each clip.
Bit rate	The number of bits used per second of audio.
Metadata	A set of data that describes and gives information about other data.

Representation of graphics and sound

Digital storage of graphics

A black and white bitmap image will store a 1 for a black pixel and 0 for a white pixel.

This bitmap image can be represented using 56 bits (or 7 bytes).

Digital storage of graphics (continued)

A colour bitmap image is stored using a longer binary number that represents how much red, green and blue (RGB) is required in the colour of each pixel to produce different colours.

The more bits in the binary number, the greater the colour depth, which leads to more colours being available.

Digital storage and sampling of sound

Colour depth	Number of availat
1 bit	2
2 bits	4
3 bits	8
8 bits	256
16 bits	65,536
24 bits	16.7 millio
32 bits	4.3 billion

Sound is converted into a digital signal by a process called sampling. This is where hardware, such as a microphone, measures the level of sound many times per second and records this as binary digits.

The higher the sampling rate, the better the quality, but larger the file size. Meta data is a set of data that gives information about other data. Examples of metadata in files

- Genre the genre that the sound file belongs to
- Date Created / Year the date the graphic was taken
- Location the location where the graphic was taken
- Size the original size of the file
- Dimensions.

Key termino	logy	Data types	0
Term	Definition	Data type	Descr
Character	A letter, digit, space, punctuation mark or various other keyboard	Integer	Whole positiv
	symbols.	Real	Numb
Character set	A table that maps a character with a unique binary number.		fractio points
Data structure	A specific way of organising data within memory so it can be processed officiently	Boolean	True o
_	processed eniciently.	Character	Letter,
Record	A data structure of related data of different data types.		punctu or vari
Primary key	A unique identifier for each record.		symbo
Array	A data structure that can hold a fixed number of data items, which must be	String	A sequ charac
	of the same data type.		

Storage of characters

Characters are stored on a computer system as a binary number using a character set. Examples of character sets include ASCII and Unicode.

A small part of the ASCII character set:

Denary	Binary	Hex	Character
64	1000000	40	Q
65	1000001	41	A
66	1000010	42	В
67	1000011	43	С

Character sets allow for meaningful data to be exchanged between different computer systems.

Data type	Description	Examples
Integer	Whole numbers, positive or negative.	42, -11, 0
Real	Numbers, including fractions or decimal points.	12.9, -17.50, 28.0
Boolean	True or false.	1 or 0 TRUE or FALSE
Character	Letter, digit, space, punctuation mark or various other symbols.	'A', 'b', '7','?'
String	A sequence of characters.	'Computer science'

Data structures

Records example

	ID*	First name	Surname	Gender	Date of birth
	1074	Sara	Davies	F	12/07/2004
	1080	Mike	Thomas	Μ	31/07/1962
	1093	Susan	Jones	F	16/08/1958
	1123	Dianna	Glanville	F	19/07/1950
	1237	Ahmed	Mushtaq	Μ	21/02/1973

- ID is the primary key field
- Four fields
- Five records
- Different data types.

[0]	[1]
37	11

- 8 elements

Traversing

Print the contents of the array above:

- 1 for i = 0 to 7
- 2
- 3 next i

Insertion

1 myArray[4] = 67

array.

Deletion

1 myArray[6] = """

This would leave the memory at index 6 blank.

Searching – arrays can be searched using the index or the value stored at the index.

One-dimensional array example

[2]	[3]	[4]	[5]	[6]	[7]
42	6	26	56	4	76

• The index always starts at position [0] • Each element can be accessed using its index • The element at index [4] is 26.

output myArray[i]

Add data to an element at a given index:

This would store the value 67 at index [4] of the

Deleting data from an element at a given index:

Key terminology

Term	Definition
Validation	Ensures that data entered is reasonable.
Verification	Ensures that data entered is consistent.

Two-dimensional array example

	[0]	[1]	[2]	3]	[4]	[5]	[6]	[7]
[0]	37	11	42	6	26	56	4	76
[1]	98	203	64	23	126	79	14	23
[2]	30	1	4	13	29	48	21	211
[3]	10	57	73	110	82	29	289	245

• 32 elements

- Elements are indexed by two numbers, one for its row and one for its column [y, x].
- Each element can be accessed using its index
- The element at index [1,7] is 23.

Data validation

Presence checks

Used to check if a required field is left blank.

- 1 if data Entered = "" then
- 2 output error message
- 3 end if

Format checks

Used to ensure data matches a specific pattern, such as which could be used to validate the format of the postcode.

- 1 if postcode <> format(LL00 OLL) then
- 2 output error message
- 3 end if

Length checks

Used to ensure an input data string is a sensible length, such as the number of digits in a phone number should be 11.

- 1 if len(telNo) <> 11 then
- 2 output error message
- 3 end if

Type checks

Used to ensure input data is a particular data type, e.g. quantity ordered to be integer or cost to be real.

Range checks

Used to ensure input data lies within a specified range, such as overtime hours to be > 0 and < 15.

1 if hours < 0 OR hours > 15 then 2

```
output error message
```

```
3 end if
```


Data verification

Double-entry

- 2
- 3 end if

Requires the user to check a display of input data and confirm that it is correct.

Check digit

More sophisticated verification algorithms apply calculations to input data, e.g. to produce the check digits of bar codes. Repeating the calculations and checking the result is the same can verify the data.

Double entry involves comparing two versions of data input, such as "re-enter your password".

1 if password <> reTypePassword then output error message

A verification algorithm will compare the two versions and inform the user if they are not identical.

Screen based / visual check

Unit 1: Software engineering

Key terms

Term	Definition
Editor	Allows a programmer to enter, format and edit source code.
Compiler	Converts source code into executable machine code. Once compiled, a program can be run at any time.
Interpreter	Converts each line of source code into machine code, and executes it as each line of code is run. The conversion process is performed each time the program is run.
Linker	A program which allows previously compiled code, from software libraries, to be linked together.
Loader	A program which loads previously compiled code into memory.
Debugger	A program which helps locate, identify and rectify errors in a program.
Trace	A facility which displays the order in which the lines of a program are executed, and possibly the values of variables as the program is being run.
Break point	Interrupts a program on a specific line of code, allowing the programmer to compare the values of variables against expected values.
Variable watch	A facility that displays the current value of any variable. The value can be 'watched' as the program code is executed line-by-line to see the effects of the code on the variable.
Memory inspector	A facility which will display the contents of a section of memory.
Error diagnostics	Used when a program fails to compile or to run. Error messages are displayed to help the programmer diagnose what has gone wrong.

Unit 1: Ethical, legal and environmental impacts of digital technology

Key terms		ŗ	Legal issues	
Term	Definition		Legislation	Overview
Ethical	Relating to beliefs about right and wrong and conforming to standards of conduct.		The Computer Misuse Act (CMA) 1990	 Helps combat issues arising from the misuse of computer systems. The Act makes it an offence to: access data without permission, e.g. looking at someone else's files
Cybersecurity	Protection against the criminal or unauthorised use of electronic data.	-0		
Code of ethics / conduct	e of ethics Defines acceptable behaviour within an organisation.			 access computer systems without permission, e.g. hacking
Environment	The surroundings or conditions in which a person, animal, or plant lives or operates.			 alter data stored on a computer system without permission, e.g. writing a virus that deliberately deletes data.
Ethical issues].	The Freedom of	People have a right to know about the activities of
Digital technolo	ogy increasingly requires us to	_0	2000	for them not to have this information.
consider the ethical issues surrounding its use. The following are examples of this:		4	The Act provides public access to information held by:	
• Drones (priv	 Drones (privacy) Self-driving cars (making decisions between life or death for its driver and other people) 		7.	 Public authorities, who are obliged to publish
 Self-driving of death for its 				certain information about their activities.
 Artificial intelligence (could the creation of thinking machines raise a host of ethical issues including the potential to harm humans). 		of Inve	The Regulation of Investigatory Powers Act	Regulates the powers of public bodies to carry out surveillance and investigation. It also regulates the interception of communications.
Code of cond	Code of conduct		(RIPA) 2000	The Act provides clear legal guidelines for
It is important for employees to conform to professional standards, including formal and informal codes of ethical behaviour.			the police, to carry out surveillance and access the digital communications of individuals, such a email, telephone calls, text messages etc.	
Formal codes o	ormal codes of ethics are usually enforced by the hreat of disciplinary action should the code not be adhered to. Each code of ethics is different and usually reflects an organisation's ethos, values and business style.			, , , , , , , , , , , , , , , , , , , ,
threat of discip be adhered to. usually reflects business style.			The Data Protection Act (DPA) 2018	The DPA applies to all 'personal data'. Personal data is classed as any information relating to a person who can be directly or indirectly identified and so it needs to be protected.
		7		

Environmental issues

Example environmental impacts of digital technology on wider society:

 Increase in delivery lorries on the road has caused increased congestion and increases in carbon emissions.

• Are we a paperless society? More and more paper seem to be consumed affecting rainforests and influencing global warming.

• Old computer equipment needs to be disposed of correctly which is expensive. Dumping old computers on landfill sites can cause pollution of toxic substances into the water supply and lead to health problems.

 Computer equipment generates heat so many organisations install air conditioning systems leading to increased carbon emissions.

• Many computers are left on standby, wasting electricity unnecessarily and increasing carbon emissions.

• Mining the rare earth elements required in the manufacture of computers causes pollution.

• Global assembly lines and pollution from transportation.

Unit 2: Programming Languages

Markup languages

HTML is a standard used when creating web pages.

HTML tags commonly come in pairs. The first tag in a pair is called the opening tag and the second tag is called the closing tag.

Opening tag	Closing tag	Description
<html></html>		Defines the root of an HTML document
<title></title>		Defines a title for the document
<body></body>		Defines the document's body
<h1></h1>		Defines HTML headings
<h6></h6>		h1 to h6
		Defines a paragraph
<i></i>		Italicises a part of text in an alternate voice or mood
		Defines bold text
<center></center>		Defines centred text
		Defines a hyperlink and specifies the URL of the page the link goes to
</a 		Defines a hyperlink and specifies the email address the link goes to
		Defines an unordered list
<		Defines a list item
<blockquote></blockquote>		Defines a section that is quoted from another source
<hr/>	N/A	Defines a thematic change in the content
	N/A	Defines an image

Unit 2: Programming Languages

Assembly language

Assembly language is a programming language that is once removed from machine code. Machine code is made up of 0s and 1s and is extremely difficult for a programmer to use. Assembly language has the same structure and instruction set as the commands in machine code but they use mnemonics (names) rather than binary code.

INP	Inputs a value and stores it in the accumulator
OUT	Displays the contents of the accumulator
STA	Transfers a number from the accumulator to RAM
LDA	Transfers a number from RAM to the accumulator
ADD	Adds the contents of the accumulator to the contents of a RAM address
SUB	Subtracts the contents of the accumulator from the contents of a RAM address
BRA	Jumps to the RAM location specified – used for loops
HLT	Stops the processor
DAT	Defines variables

Benefits of using assembly language:

- require less memory and execution time
- allow code to interact directly with hardware, such as device drivers
- suitable for time-critical processes.

This is an assembly language program to add together two numbers.

INP	Input a number
STA 1A	Store the number in me
INP	Input a number
ADD 1A	Add this number to the 1A
OUT	Output the result
HLT	Stop

This is an assembly language program for the subtraction of one number from another.

INP	input a number
STA first	store the number in a va
INP	input a number
STA second	store the number in a va
LDA first	load the number in the
SUB second	subtract the contents of accumulator
OUT	output the number in th
first DAT	declare 'first' as a variab
Second DAT	declare 'second' as a var

emory location 1A

number stored in memory location

variable called 'first'

variable called 'second' 'first' variable into the accumulator f the 'second' variable from the

he accumulator ble riable